1. <u>Úvod</u>.

Niklové superzliatiny patria k materiálom s výnimočne vhodnou kombináciou pevnosti pri vysokých teplotách, húževnatosti a odolnosti voči degradačným procesom v dôsledku koróznych procesov alebo oxidácii pri vysokých teplotách. Tieto superzliatiny sú aplikované v konštrukcii leteckých motorov, generátoroch parných turbín, motoroch rakiet, konštrukčných častiach jadrových elektrárni a zariadeniach v chemickom priemysle. Intenzívnym výskumom boli vyvinuté niklové superzliatiny schopné pracovať pri teplotách okolo **1.050** °C s krátkodobým zaťažením až pri **1.200** °C čo predstavuje 90% teplotu tavenia týchto Ni superzliatin.

Na <u>obrázku 1</u> je schéma princípu konštrukcie leteckého motora, na <u>obrázku 2</u> je schéma teplotných pomerov. Na <u>obrázku 3</u> rez leteckým motorom firmy Rolls - Royce.

Obr. 1 – Princíp konštrukcie leteckého motora [1].

Obr. 2 – Teplotné pomery leteckého motora [2]

V studenej sekcii sa aplikujú Ti zliatiny, v teplej sekcii Ni superzliatiny a v oblasti kde teploty sú cca 1.450 °C kompozitné materiály.

<u>Obr. 3</u> – Rez leteckým motorom firmy Rolls – Royce [1].

Lopatky a disk z Ni superzliatiny určené pre prácu v teplej sekcii , obrázok 4.

Obr. 4 – Lopatky a disk turbíny z Ni superzliatiny [1]

Bez Ni superzliatin by nebola možná výroba leteckých motorov kde napríklad na lopatky v teplej sekcii sú vysoké nároky na pevnostné vlastnosti i pri jednorazovej teplote až **1.200 °C** [3] a odolnosť voči oxidácii.

Obecné požiadavky na jednotlivé leteckého motora sú nasledovné:

Kompresor. Teplota v tejto časti je do 500 °C, maximálne zaťaženie do 500 MPa [2].

- Spaľovacia komora. Teplota spalín môže byť až 1.700 °C, v dôsledku chladenia vzduchom je ich teplota v intervale 1.100 až 1300 °C. Hlavnými faktormi limitujúcimi životnosť sú korózia a tepelná únava [2].
- <u>Disk turbíny</u>. Maximálna teplota v tejto časti je 750 °C, odstredivá sila do 500 MPa. Požaduje sa vysoká hodnota Re a únavovej pevnosti [2]
- Lopatky turbín. V dôsledku kombinovaného namáhania vysokým napätím a vysokej teploty v tejto časti leteckého motora vyžaduje sa od Ni superzliatin : vysoká hodnota Re a creepu v kombinácii s vysokou únavovou pevnosťou a koróznou odolnosťou [2].

1. Chemické zloženie Ni superzliatin, význam legujúcich prvkov.

Nominálne chemické zloženia typických Ni superzliatin je v **tabuľke 1** a alternatívy spôsobu výroby lopatiek liatím sú na **obrázku 5** [3], [4].

Zliatina	Aplikácia	Cr	Со	Ti	ΑΙ	Мо	W	Та	Hf	С	Zr	В
Nimonic	Výkovky	14,5	13,3	3,8	5,0	3,3	-	-	-	0,15	0,05	0,016
MAR M200	Odliatky	9,8	10,0	1,5	5,8	-	10,0	2,5	1,50	0,15	0,15	0,015
SRR 99	Monokryštal	8.5	5,0	2,2	5,5	-	9,5	2,8	-	-	-	-
CMSX-4	Monokryštal	6,5	9,0	1,0	5,6	0,6	6,0	6,5	0,10	-	-	3,0 Re
Astroloy	PM	14,9	17,2	3,5	4,0	5,1	-	-	-	0,13	-	-
Rene´ N6	Monokryštal	4,2	12,5	-	3,8	1,4	6,0	7,2	0,15	0,05	-	0,01 Y
												5,4 Re

Tabuľka 1 : Obsah prvkov [hmot %].

Poznámka: PM – Technológia práškovej metalurgie.

Možnosť technológie monokryštalu, usmernenej kryštalizácie a klasickej kryštalizácie výroby lopatiek dokumentuje **obrázok 5**.

Obr. 5 – Možnosti technológie výroby lopatiek [4].

Význam jednotlivých legujúcich prvkov, ich vplyv na vlastností charakterizuje tabuľka 2.

Klasifikácia vplyvu	Legujúce prvky	Účel legujúci prvkov
Prvky substitučne spevňujúce	Co, Fe, Cr, Mo, W,	Substitučné spevnenie Ni matrice.
Ni matricu.	V, Ti, Al	Al a Cr zároveň zvyšujú odolnosť voči korózii.
Prvky tvoriace γ´ fázu.	Al, Ti, Nb, Ta	Precipitačné spevnenie Ni matrice
Karbidotvorné prvky.	Cr, Mo, W, V, Nb, Ta, Ti, Hf	Blokovanie vzájomného pohybu zŕn pri creepe – zvýšenie creepových vlastností.
Aktívne prvky na hraniciach zrn.	Zr, B	Zvýšenie creepovej pevnosti a lomovej húževnatosti. Segregujú na hraniciach zŕn.
Prvky zvyšujúce odolnosť voči oxidácii.	Y, Re	Zvýšenie odolnosti voči oxidácii.

Tabuľka 2 : Legujúc prvky Ni superzliatin [4], [5].

a. <u>Prvky substitučne spevňujúce Ni matricu</u>. <u>Ich úlohou je substitučné spenenie Ni</u> <u>matrice</u>. Vyznačujú sa vysokou rozpustnosťou v Ni matrici. Efekt substitučného spevnenia je možné, z hľadiska legujúcich prvkov aplikovaných v Ni superzliatinách, zoradiť do nasledujúceho poradia : W, Mo, Cr, Fe, Ti, Co, Al a V. Najefektívnejšie substitučné spevnenie je W, Mo a Cr, <u>obrázok 6</u>. Výhodou substitučného spenenia je, že sa zachováva do relatívne vysokej teploty T = 0,6T_{tav}. V prípade Ni je to 873 °C. Nevýhodou, že substitučné spevnenie nie je tak efektívne ako precipitačné.

<u>Obr. 6</u> – Vplyv W, Mo a Cr na Rp0,2 [4].

<u>Prvky tvoriace γ' fázu</u>. Úloha γ' fáze je precipitačné spevnenie Ni matrice</u>. Fáza γ' má tetragonálnu kryštalografickú mriežku ,rozdiel v parametroch mriežok medzi Ni a γ' fázou je menší ako 1,5%. Na <u>obrázku 7</u> je schéma kryštalografických mriežok Ni a γ' fáze. Kubické precipitáty γ' fázy v Ni superzliatine sú dokumentované na <u>obrázku</u> <u>8</u>

Rovinné usporiadanie Ni a Al atómov v y' fáze priestorové usporiadanie atómov v y' fáze

<u>Obr. 8</u> – Kubické precipitáty γ´ fáze v Ni matrici [8].

V dôsledku malého rozdielu v parametroch kryštalografickej mriežky medzi Ni a γ' fázou je fáza γ' koherentná s Ni matricou , pričom koherencia medzi Ni matricou a γ' fázou je udržiavaná tetragonálnou distorziou γ' fáze, model na **obrázku 9** (atómy Ni sú modré).

<u>Obr. 9</u> – Model tetragonality γ´ fázy pri legovaní Ni prvkami Al, Ti, Nb [8].

Nakoľko medzipovrchová energia na rozhraní matrica/ γ' precipitát je veľmi nízka, takmer nulová, dochádza k homogénnej nukleácii precipitátov γ' v Ni matici. Tieto γ' koherentné precipitáty sú teplotné stabilné do veľmi vysokých teplôt. V dôsledku toho sú i pevnostné vlastnosti zachované do vysokých teplôt, **obrázok 10**.

<u>Obr. 10</u> – Závislosť Re od teploty pri 20% fázy γ´.

Moderné Ni superzliatiny majú 60 až 85% podiel γ' fázy a k strate pevnostných vlastností precipitačným spevnením γ' fázy dochádza pri teplotách cca 1.000 °C. Precipitáty γ' fázy sú intermetalické zlúčeniny napríklad Ni₃Al, (Ni,Fe)₃Al, Ni₃(Al, Ti), Ni₃Nb ktorých stechiometrický pomer je závislí od chemického zloženia superzliatiny. V <u>tabuľke 3</u> sú uvedené mriežkové parametre Ni₃Nb, ktorej mriežkový parameter **c** je totožný s mriežkovým parametrom **a** niklu.

Kov/intermetalická fáza	Parameter mriežky [nm]				
Ni	a = 0,3616				
Ni₃Nb	a = 0,3616				
	c = 0,7416				

Tabuľka 3 : Mriežkové parametre Ni a Ni₃Nb.

- c. <u>Karbidotvorné prvky</u>. <u>Ich úlohou je zvýšenie creepových vlastností</u> v dôsledku vylúčenia sa na hraniciach zŕn, čím je blokovaný ich vzájomná pokĺz. Na druhej strane negatívne ovplyvňujú únavové vlastností. Karbidy prítomné v Ni superzliatinách sú:
- Karbidy typu MC vytvárajú sa v procese kryštalizácie a vylučujú sa predovšetkým na hraniciach dendritických buniek. Termodynamická stabilita týchto karbidov je daná nasledovným poradím : HfC, TiC, TaC, NbC a VC. Hafnium zároveň vytvára precipitáty γ' ktoré sa vylučujú v Ni matrici už v procese kryštalizácie. Morfológia vylúčených karbidov typu MC je na <u>obrázku 11</u>.

Karbidy typu M₂₃C₆. Vnikajú transformáciou (premenou) z karbidov MC. Tepelným spracovaním dochádza k ich diskontinuálnej precipitácii, na hraniciach zŕn, <u>obrázok</u> <u>12</u>, čo zvyšuje creepové vlastností.

<u>Obr. 12</u> – Diskontinuálna precipitácia karbidov M₂₃C₆ na hraniciach zŕn.

- Karbid Cr₇C₃. Vylučuje sa na hraniciach zŕn a transformuje na stabilný karbid Cr₂₃C₆.
- ➤ Karbidy typu M₆C .Sú najstabilnejšie karbidy. Vznikajú konečnou transformáciou (premenou) podľa schémy : MC → M₂₃C₆ → M₆C. Zvyšujú creepové vlastností. Charakter týchto karbidov , difraktogram a EDX analýza je na <u>obrázku 13</u>.

<u>Obr. 13</u> – Karbidy M₆C.

Identifikácia prítomných karbidov sa uskutočňuje na fóliách pomocou transmisnej elektrónovej mikroskópie – TEM. Na **obrázku 14** je ukážka identifikácie prítomnosti karbidu W₂₃C₆ pomocou difrakčných bodov.

Obr. 14 – Difrakčné body W₂₃C₆.

- d. <u>Aktívne prvky na hraniciach zŕn</u>. <u>Ich úlohou je zvýšenie creepových vlastností</u> <u>a lomovej húževnatosti</u>. Obe prvky Zr a B segregujú na hraniciach zŕn kde nahradzujú prítomné vakancie a sťažujú vzájomných pokĺz zŕn pri vysokých teplotách. Obe prvky majú výrazne odlišný atómový priemer ako Ni. Ak považujeme atómový priemer Ni = 100%, potom rozdiel v atómových priemeroch voči Ni je u Zr +26% a u B -69%.
- e. <u>Prvky zvyšujúce odolnosť voči oxidácii</u>. <u>Ich úlohou je vytvorenie kompaktnej oxidickej vrstvy ktorá blokuje oxidáciu pri vysokých teplotách</u>. Boli vyvinuté zliatiny legované Re, Y a S ktoré majú i nižšiu špecifickú hustotu vzhľadom k iným Ni superzliatinám [15] -[17]. Nominálne chemické zloženie troch zliatin legovaných aj Y, Re a S je v <u>tabuľke 4</u>, ich špecifická hustota v <u>tabuľke 5</u>.

Zliatina	Al	Cr	Со	Мо	Re	Та	Y	Ni	В	С	S
LDS-1101	6,0	4,7	9,9	7,1	3,0	6,2	50 ppm	63,1	0,0035	0.0160	4,1 ppm
LDS-5555	6,0	2,4	4,9	9,5	1,5	6,2	46 ppm	69,4	0,0032	0,0168	2,8 ppm
IDS-5051	6,0	2,4	-	9,0	3,0	6,1	65 ppm	73,4	0,0040	0,0140	2,8 ppm

Tabuľka 4 : Obsah prvkov [hmot. %]

Tabuľka 5 : Špecifická hustota

Zliatina	Špecifická hustota [g.cm ⁻³]
LDS-1101	13,92
LDS-5555	13,97
LDS-5051	14,10

Rozloženie legujúcich prvkov v oxidickej vrstve zliatiny LDS-1101 po 300 hodinách pri teplote 700 °C je na obrázku 15 (všimnite si rozloženie síry).

Obr. 15 – Rozloženie prvkov v oxidickej vrstve zliatiny LDS-1101 [16].

2. <u>Tepelné spracovanie Ni superzliatin</u>.

- <u>Žíhanie na zmenšenie napätí</u>. Realizuje sa u precipitačne vytvrditeľných zliatin obvykle v intervale 550– 870 °C. Teploty sú závislé na chemickom zložení danej superzliatiny. Jeho cieľom je zníženie vnútorných napätí po plastickej deformácii za studena.
- b. <u>Vytvrdzovanie</u>. Pozostáva z rozpúšťacieho žíhanie obvykle v intervale teplôt 1.150 1350 °C a umelého starnutia v intervale 650 950 °C. Teplota umelého starnutia limituje teplotu exploatácie danej Ni superzliatiny.

Tepelné spracovanie Inconel 713 C je dokumentované na obrázku 16 [14].

Obr. 16– Tepelné spracovanie Inconel 713 C [14].

Charakter štruktúry tejto Ni superzliatiny v liatom stave a po vytvrdení dokumentuje **obrázok 17**.

Liaty stav - γ´ fáza v Ni matrici

Vytvrdený stav – γ´ fáza + karbidy

Obr. 17 – Charakter štruktúry Inconel 713 C [14].

Rozloženie legujúcich prvkov v Ni matrici v troch stavoch dokumentuje obrázok 18.

Obr. 18 – Rozloženie legujúcich prvkov v Ni matrici [14].

Pri rozpúšťacom žíhaní je veľmi dôležité poznať rýchlosť ochladzovania z teploty rozpúšťacieho žíhania ktorá by zabezpečila, po ochladení , presýtený tuhý roztok. Z uvedeného dôvodu boli zostrojené, pre jednotlivé zliatiny, príslušné krivky anizotermického rozpadu. Na **obrázku 19** je sú krivky pre Ni superzliatinu s označením Nimonic 263. Kritická rýchlosť ochladenia je pre túto zliatinu veľmi vysoká cca 300 °C/sek.

Obr. 19 – Anizotermický rozpad zliatiny Nimonic 263 [13].

Pre optimalizáciu vlastností je dôležite stanovenie teploty a času umelého starnutia. Na **obrázku 20** sú krivky umelého starnutia superzliatiny Nimonic 80 A po nasledovnom režime rozpúšťacieho žíhania : 1.080 °C/8 hod. → voda.

Obr. 20 – Závislosť HV30 na teplote a čase umelého starnutia [4].

Vlastností a typická oblasť aplikácie precipitačne vytvrditeľnej Ni superzliatiny Nimonic 80A je na <u>obrázku 21</u> (hodnoty Rp0,2 sú zachované do cca 700 °C).

Obr. 21 – Závislosť Rm, Rp0,2 a A na teplote [4].

3. Vývoj Ni superzliatin.

Bolo zistené, že pre efektívnejšie spaľovanie leteckého paliva a tým i dosiahnutie vyšších výkonov leteckých motorov by bolo potrebné mať materiály, ktoré by mohli krátkodobo pracovať pri teplotách okolo **1.800** °C [3]. Z tohto dôvodu ďalej pokračuje výskum a vývoj Ni superzliatin. Na <u>obrázku 22</u> sú roky vzniku jednotlivých Ni superzliatiny a maximálne teploty ich aplikácie. Jedná sa o zliatiny označované ako zliatiny prvej až šiestej generácie.

Obr. 22 – Ni superzliatiny a maximálna teplota ich aplikácie [4].

Pozornosť mimo chemického zloženia a prípadného tepelného spracovania je venovaná i technológii výroby ktorá výrazne ovplyvňuje úžitkové vlastností Ni superzliatin, **obrázok 23**, **24**.

Obr. 23 – Vplyv technológie výroby na creepové vlastností, zliatina MAR-M200 [4].

Obr. 24 – Vplyv technológie výroby a teploty na Re [12].

Hlavným výskumným problémom je optimalizácia vlastností. Požadujú sa napríklad dobré únavové vlastnosti, čo je protichodné so zabezpečením vyhovujúcich creepových vlastností s prítomnými karbidmi na hraniciach zŕn, ktoré sú zárodkami únavových trhlín. Ďalším problémom sú náročne skúšky vlastností pri vysokých teplotách vyžadujúce stovky hodín i požadovaná vysoká odolnosť voči oxidácii.

Literatúra.

[1] <u>https://www.google.com/search?q=Rolls+royce+blade+for+aircraft+engines,+pictures</u>

[2] https://www.mah.se/upload/ upload/Ni-base%20superalloys.pdf

[3] Pollock T.M et al, Nickel-Based Superalloys for Advanced Turbine Engines, Chemistry, Microstructure, and Properties, Journal of Propulsion and Powder, 2006, March, pp. 361-374.

[4] Bhadeshia H. K. D.H. Nickel Based Superalloys, University of Cambridge, 2018. <u>https://www.phase-trans.msm.cam.ac.uk/2003/Superalloys/superalloys.html</u>

[5] Lukáč I. Ševčíková J. Aplikovaná fyzikálna metalurgia, 1996, TU Košice, Elfa s.r.o., ISBN 80-88786-41-X.

[6] Sims C.T et al, Superalloys II, 1986, Wiley, New York.

[7] Qiughua Zhang et al, Study of Microstructure of Nickel-Based Superalloys at High Temperature, Scripta Materiala, 2017, Vol. 126, pp. 55-57.

[8] Hiroto Kitaguchi, Microstructure-Property in Advanced Ni-Based Superalloys, <u>https://www.intechopen.com/books/metallurgy-advances-in-materials-and-</u> <u>processes/microstructure-property-relationship-in-advanced-ni-based-superalloys</u>

[9] El-Bagoury N. Microstructure and Mechanical Properties of Aged Nickel Based Superalloys, Arch. Appl. Sci. Res. 2011, Vol. 3, pp. 266-276.

[10] <u>https://www.google.com/search?q=Ni+superalloys</u>

[11] Simarpreet Singh, Superalloys Report, 2016, January https://www.researchgate.net/publication/291336421 Superalloys Report

[12] Haibo Long et al, Microstructural and Compositional Design of Ni-Based Single Crystalline Superalloys – A Review, Journal of Alloys and Compounds, 2018, Vol. 743, pp. 203-220.

[13] Furrer D.U et al, Optimizing the Heat Treatment of Ni-Based Superalloys Turbine Discs, JOM, 2003, Vol. 55, pp.32-34.

[14]Galizoni B.B et al, Heat Treatments Effect on Nickel-Based Superalloy Inconel 713 C, Metals, 2019, January, pp. 2-10.

[15] MacKay R.A et al, A New Approach of Designing Superalloys for Low Density, JOM, 2010, January, pp. 48-54.

[16] Smialek J.I et al, Cyclic Oxidation of High Mo Reduced Density Superalloys, Metals, 2015, Vol. 5, pp. 2165-2185.

[17] Smialek J.I et al, Low Temperature Hot Corrosion Screening of Single Crystal Superalloys, Materials, 2018, October, pp 45 55.

Ústí nad Labem, 2nd – 27th September, 2019.